Lasers are extensively used in medicine and surgery. The first practical application was in eye surgery, where laser was used to weld detached retina and photocoagulate the blood vessels that grow into the region in front of the retina, thereby blocking vision. The laser beam easily passes through transparent portions of the eye, including Cornea and lens to the region of its intended use where its energy is absorbed for treatment. Retina is a sensitive membrane inside the eyeball.
Its detachment from the surrounding choroid coat initiates due to a hole in the retina caused by an injury or degenerative changes during the old age. This makes the thick fluid vitreous humour seep and fill itself between the retina and chord oat. The pressure between the retina and choroid coating damages the retina which Soon gets detached from the optic nerve at the back of the to cause blindness.
Before the invention of laser, this delicate operation was done by irradiation of the eye with a xenon arc lamp or even by focusing the sunlight on to the choroid coat. This method involved exposure time to concentrate sufficient he the site of the detached retina. The process cumbersome, painful and relatively slow. Be the patient had to be anaesthesised to prevail eye from moving. Using a high energy pulsed laser, like Nd:YAG, the intense laser light focused as a tiny spot at the detached retina 'welding' it to the underlying choroid coat of the a short time (of the order of one-thousandth of a second). The operation is painless and doe affect the surrounding healthy tissues. Laser also be used to burn out small tumours on the surface of the eye and also those in the vessels of the eye. It is being used to treat coma, cataract, sealing of the retina and even viral diseases of the eye.
The laser cane which is a boon for blind persoi1S operates on the principle of a radar. Two lasers within the cane provide pulses of infrared light which are reflected from points, a short distance in front of the cane. Each reflected beam returns to a photocell inside the cane. The two photocells activate pins in the handle. When the path is smooth, the two pins vibrate steadily. Any hole or other obstacle scatters the light from at- least one of the lasers and stops the vibrations, thus warning the user. The device operates on four small batteries which last up to ten hours. It allows a blind person to scan the area ahead of him and have an idea of the object's shape, distance and dimensions by variations in pitch and intensity of the tone it emits
Lasers are increasingly being used for the treatment of many different types of cancer. A laser is less damaging than x-ray therapy and surgery; and in many cases, it is quite effective. The use of lasers to remove certain forms of cancerous growth in the body has heralded an era of knifeless and bloodless surgery. It is very effective in curing the diseases of gynaecology, ear, nose, throat, tongue, palate, and cheeks. It is curative in most early cancers, and in late cancers, it is useful in reducing the tumours to facilitate surgery.
Photodynamic therapy (POT), a new exciting form of cancer treatment, combines laser with light-sensitive dye, hematoporphyrin derivative (HPD). This substance, derived from the cow's blood, travels throughout the body of the patient and settles in the malignant tissues. A red light from argon pumped dye laser, focused on the area activates HPD, and the energized substance releases a highly reactive chemical that destroys the cancer cells. Reports indicate that POT is 80 to 90 per cent successful in causing total or neartotal regression of tumours, even after all other forms of therapy have failed. It is highly selective for a diseased tissue, leaving healthy cells relatively untouched.
At some medical centres in the US,searchers have used laser to treat colonic and other types of gastrointestinal cancer. Using endoscope, the laser energy is used to destroy neoplastic tissue while preserving bowel wall integrity. In some cases, rectal polyps were removed using the CW argon laser, delivered with a power of 4-5 W.
With the development of optical fibres lasers are being used for heart surgery. A common problem with the arteries is the build up of plaque on their interior walls. The plaque, consisting fatty material, calcium, etc, blocks the coronary. arteries reducing the blood flow through the This results in Angina pectoris, a condition that afflicts millions of people worldwide. If the coronary artery is partially blocked, the situation can sometimes be improved by using a method called angioplasty. When substantial blockage of the coronary artery is observed, a laser beam se through the optical fibre could be used to vapourise the plaque, opening a clear channel for smooth flow of blood. This method is called laser angioplasty or vascular recanalisation. Usually argon-ion, Nd:YAG, and carbon dioxide lasers al used for this purpose.
Another important use of the fibre-optic laser catheter is in the treatment of bleeding ulcers. The laser light can photocoagulate blood, thereby causing the cession of bleeding. For this purpose among the three important lasers(carbon dioxide, Nd:YAG and argonion), the Nd:YAG laser is preferred because it penetrates deep into the tissue and its effects are not localised at the surface. Using a laser endoscope, small tumours in the urinary bladder are destroyed. Similarly, Nd:YAG and dye lasers are also used to rapidly heat and shatter urinary stones in the
Kidney Laser can also be used for dental treatment Laser beam is useful for charring tooth decay through a painless process called laser glazing. The beam from a high repetition pulsed laser can be focused on dark decayed areas of teeth cavities to destroy the infection in the affected areas in a fraction of a second.