Murine Monoclonal Antibodies for Antigenic Discrimination of HIV-1 Envelope Proteins.
Sealy RE1, Jones BG1, Surman SL1, Branum K1, Howlett NM1, Flynn PM1,2,3, Hurwitz JL1,4.
Author information
Abstract
In the influenza virus field, antibody reagents from research animals have been instrumental in the characterization of antigenically distinct hemagglutinin and neuraminidase membrane molecules. These small animal reagents continue to support the selection of components for inclusion in human influenza virus vaccines. Other cocktail vaccines against variant pathogens (e.g., polio virus, pneumococcus) are similarly designed to represent variant antigens, as defined by antibody reactivity patterns. However, a vaccine cocktail comprising diverse viral membrane antigens defined in this way has not yet been advanced to a clinical efficacy study in the HIV-1 field. In this study, we describe the preparation of mouse antibodies specific for HIV-1 gp140 or gp120 envelope molecules. Our experiments generated renewable reagents able to discriminate HIV-1 envelopes from one another. Monoclonals yielded more precise discriminatory capacity against their respective immunogens than did a small panel of polyclonal human sera derived from recently HIV-1-infected patients. Perhaps these and other antibody reagents will ultimately support high-throughput cartography studies with which antigenically-distinct envelope immunogens may be formulated into a successful HIV-1 envelope cocktail vaccine.
PMID: 26544795 [PubMed - as supplied by publisher]